The 'monsters' of astronomy before Copernicus:
 Regiomontanus's criticisms of
 Ptolemaic modeling in the Defensio Theonis

Michael H. Shank University of Wisconsin-Madison

Jobänes vö K onigfpery tigathei

Best portrait of Johannes Müller von Königsberg = Regiomontanus
from the
Nuremberg
Chronicle (1493) by Hartmann Schedel, who knew him personally

5 5i
micher: von fit weifbe bet.vit achtpet fyñchu bete Dit mit rect Sirto: bejerec nochms Joclatts effenfis ठer fich vmb

Overview

- Many thanks and Introductory remarks
- Regiomontanus before the Defensio
- Introduction to Defensio
- Monster language in Defensio: sampling
- Damage of epicycles, eccentrics, and equants to Moon and Mercury among others
- Fluid heavens monster
- Partial orbs monster
- A concentric Almagest?
- Regiomontanus reaction to Commentariolus?

Regiomontanus's pre-Defensio critiques of received astronomy

- "Letter to Vitez" (1460) sketches homocentric models for Sun and Moon
-"Letter to Bianchini" (ca. 1463-64) criticizes large but unseen theoretical variations in area:

Moon: 4x
Mercury: 9x
Venus: 45x
Mars: 51x

FIg. 1. Theory of the Sun without an eccentric.

Fig. 2. Theory of the Moon without eccentrics and an epicycle.

Swerdlow's drawing of the "slider-crank" mechanism

Prelude: Almagesti minor

- Rewritten "Euclidization" of Almagest
- Early 13th c.: Almagesti minor is earliest Latin technical presentation of Almagest (books 1-6 only) (ed. Henry Zepeda, PAL, v. 1, 2018)
- Author restructures books 1-6 in quasi-Euclidean format: propositions with proofs [Almagest does not do so]
- Crucial consequences for 15th-16th c. specialists (Peuerbach, Regiomontanus, Copernicus)—more below

Background of Regiomontanus's critique

- Henry of Langenstein's De reprobatione ecentricorum et epiciclorum (Paris, 1364)
- His own earlier critique of the Theorica planetarum communis on physical grounds:
- Ptol. lunar theory (4 x area increase) inconsistent with observed size (no change)
- Critique of theory of Mercury

Regiomontanus's copy of Langenstein's De reprobatione eccentricorum et epicyclorum (ÖNB 5203)

perigee of planet q 's \Downarrow center
apogee of \Uparrow planet f 's center

Campanus of Novara's Hyper-detailed schema for computing planetary distances

$S=$ Boundary of contiguous 'physical' spheres \Rightarrow

Regiomontanus, Defensio, 158r

- "since, whatever their thickness, the orbs of this sort very recently superimposed upon the spheres increase [the thickness] of the celestial region, those who get excited about climbing the celestial heights on stairs cut out here and there are effectively laboring in vain."
(book 9)

Regiomontanus, Defensio, 158r

- Indeed, although individual planets may have [known] eccentric and epicyclic radii and known eccentricities with their individual radii, and [although] the Moon's maximum distance from the universe's center in e.r. has been discovered, nevertheless the conversion of proportions necessary for this work should be kept in check by so many orbs of unknown thickness inserted here and there.
 \section*{\section*{Peuerbach,
 \section*{\section*{Peuerbach,

 Theoricae novae

 Theoricae novae planetarum ($1^{\text {st }} \mathrm{ed}$.)} planetarum ($1^{\text {st }} \mathrm{ed}$.)}

written 1454 (Vienna) printed ca. 1472 by Regiomontanus (Nuremberg)

au latiy phiblemphier evenererises

THEORICAE NOVAE PLANETARYM GEORGII PVRBACHII ASTRONOMI CELEBRATIS51MI DE SOLE

A commission and an

innovation: Vienna, 1460-61

- The Vienna astronomers get "international recognition"
- !460: Visiting Greek Cardinal Bessarion asks Georg Peuerbach to write an Epitome of the Almagest
- Request born from controversy between Bessarion \& George of Trebizond, trans. \& comm. on Almagest
- Bessarion commissions Epitome as an alternative to George's Commentary on the Almagest (1451), which he despises
- Peuerbach dies (1461) with Epitome half finished; Regiomontanus promises to complete it
- With Bessarion, disciple Regiomontanus arrives in Venice San Giorgio Maggiore (561 years ago)

Epitome of the Almagest

- Ca. 1462, Regiomontanus finishes the second half and edits the whole
- Crucial! Peuerbach begins the Epitome in imitation of the Almagesti minor.
- Format: numbered propositions and proofs [see H. Zepeda's edition!]
- Structure forces Regiomontanus to prove what was not proven in the remaining books of the Almagest
 fionem planetarum oinerfam: "Ezogrefium videlicet ©tation nem: τ Eegrefium. 'elariationes nonnullas in longitudinem motus epicyclouigratia accidentes lucidifime oifcernil.

Dropofitio

- $\underset{\text { sima. }}{ }$

3 planetis altionibus vnicapo fueris oiucritatem:cpicycius in concentrico: ant ccentricus fine epicyclo cidem fufficiens erit occafio.

- Diuerifati que foli colligata eft in tellige." Donamus itaqz 9 morus epi cycli in concentrico: a moths planere in epicyclo collecticquent medio mor tui folis:quemadmodü fuperius ofté, fa pofalant. Ecentrici vo centrimos ueatur ad ficceefione figho: in eque ve: lociter cum fole: τ planeta ipré inuili) ter ea velocitate pzocedat: qua epiç, clus in concentrico, Eius quidem medium locum scterminet linea s centro mundi oucta equidiftanter linee ercunti a centro ecentrici per centrum pia nete. (S. Sitigit circulus mundo concentricus.a.b.b.f.fuper centro. $\%$. τ fit p.
 cto.b.büq₹ fol medio curfu coniunctus fuit planete: punctus.b.f.fiut centrü ecentrici. Tzunc voc cpicyclus fit fuper puncto.b. z planeta in cpicyclo fuper puncto.0. Ductis igitur lineis. $\mathbf{3}$.b.d.d.b.o.n.0.5.5.o.et.5.8.crit angulus.a.5.5.b. motus medii:z z angulus.d.d.bo. biuerfitatis fiuc motue medij arguméti. $\mathfrak{I t}$
 cici:quod fit.n. Ponamus itaqs piimo concentricum zecentricum cquales: et p:opo:tionem fmidiametri concentriciad femidiametrun epicycli cqua lemp p:opo:tioni femidiametri ceętrici ad oiftantiam centro:um. Eritigitur

 quares.b.et.n.o.equales z fibi equidiftant. Et quia funt cquales : crumt bue linee. sue linee.j.jn.et.b.o.equiidiftanteg.vade fuper centro.n..ocifripto cir,

Regiomontanus, Epitome of the Almagest (1462; printed 1496)

$7^{82} 11$ anzuilus"a f5 formot motin motn firmel lougindis pt inp a f binioni longundirg tanm magnisudmé rappraber atys

"sp hinumizderay pouris so ind ppt pangutio . fiotmin prellam rom'ón-lmina folm

Defensio, book 12, 219r

- Before yours eyes, you have then that neither a lunar eccentric nor an epicycle can be tolerated, because not only do they not correspond to the Ptolemaic decrees [e.g. Almagest 3.3?], but they also exhibit poorly the uniformity of motions to be safeguarded by the astronomer.

Defensio, 219v equant problems

- "But for the period of Mercury, he also then demands to explore eccentrics, if that for the sake of which they were instituted can exhibit a function. Indeed, since the eccentric deferent, like that of the Moon, is unstable, the motion and equality that they call equant [note distance from the concept! $]$ is referred to the center of the eccentric;"

Defensio, 219v equant (1)

- "as in the lunar case, the center of the epicycle, since it is carried uniformly about the other center, of the equant, is shown to move altogether non-uniformly with respect to the eccentric center; and for that reason, the nonuniform motion is governed by Mercury's eccentric. "

Defensio, 219v equant (2): mean aux

- "Likewise, since the epicycle gets a uniform degree from its mean aux, which is unstable, it is necessary on account of the fastigium of the epicycle that the certain and definite planet itself be carried non uniformly, as proven by the straight line extended from the eccentric center through the epicycle center. Recall briefly that because of the eccentric and epicycle together, the diameter of Mercury can appear variable/different.

Critique of mean aux and non-uniform motion of the planet in the epicycle

Moon/Merc uniform motion measured from "mean aux;" = line from equant O to "mean aux" moves, (since O is carried around Terra on small crank circle, the mean aux reference point oscillates and planet does not move uniformly about K

FIG. 3

Defensio, 219v unseen increase in area

- The greatest distance of Mercury that is made up of the two radii of the eccentric and the epicycle together with the tripled eccentricity is $91 \mathrm{p} 30^{\prime}$, where the radius of the eccentric is 60 p ; the least distance is 33 ; 3 ' of the same parts. These numbers exhibit almost a three-fold proportion [ergo ninefold increase in area]

Defensio, 219v: Latin

- Sed nam tempus Mercurii quoque postulat deinceps eccentricos explorare si cuius gratia instituti sunt officium exhibeant. Verum cum eccentricus deferens eius sicut et lune instabilis sit, motusque \equalitas / ad centrum eccentrici quem vocant equantem referatur haud aliter quam in negocio lunari ostendetur centrum epicycli cum equaliter in centro \alieno/ equantis feratur, inequaliter ominino penes centrum eccentrici se deferentis moveri; atque idcirco ab eccentrico mercuriali inequalem penitus motum administrari.
- Epicyclus item cum ab auge sua media que instabilis est/ equalem Mercurio gradum concedat, necesse est ${ }^{\text {penes } / ~ f a s t i g i u m ~ e p i c y c l i ~}$ certam atque definitam ac recta quidem ex centro eccentrici per centrum epicycli prodeunte commonstratam inequaliter stellam ipsam ferri . Quod autem propter utrumque simul eccentricum atque epicyclum variam Mercurii diametrum apparere oporteat, breviter commemorabimus.
- Maxima quippe Mercurii distantia que ex duabus semidiametris eccentrici et epicycli una cum eccentricitate triplicata colligitur est 91; 30 qualium semidiameter eccentrici est 60; minima vero distantia 33; 3 similium partium. Hi numeri triplam ferme proportionem suscipiunt;

Defensio, 224v the fluid heavens monster (1)

- "For if you think this fifth body is fluid and prone to giving way, this cannot happen unless that part of it which is behind the advancing planet immediately insinuates itself into the place left behind, for <the part> that is lateral, being more distant, is incapable of flowing there, as nature always chooses the shortest path.

Defensio, 224v the fluid heavens monster (2)

- "Another part will therefore follow the one replacing at the back, ... such that, for the least movement of a single planet, other things being largely at rest, the entire region of the heavens must become agitated--unless you oppose this monster by means of the rarity of the body from the rear, which also requires that the parts in front give way, unless you can concoct condensation."

Defensio, 225r
 a Peuerbach monster?

- Pray tell what exists between solar and Martian eccentrics, when no vacuum. For if you believe they are contiguous, you must say that they are concentric to one another, which experience shows to be impossible. But you attempt to surround each with two orbs that have some surfaces eccentric (those touching the planet's deferent), others concentric to the world, so that the planetary spheres are made to fuse concentrically to the world by tenuous orbs. This however advances a species of I know not what monstrosity, that there be in the heavens bodies of such varied thickness, here so skinny, there however swelling greatly by some extraordinary contrivance-- a picture so defective that it could not possibly please nature.
secisutij philderphilw vienratibpo

THEORICAE NOVAE PLANETARVM GEORGII PVRBACHII ASTRONOMICELEBRATIS5IMI

Ot habet tretorbes a feimuiren omenizag, diuito Mq fifit contiguon quoy fopmua Secuindi fugiak onnuexom et mundo conctutricuif focundícoar

 juv nüri boy medro locrus um foconda fartion
 uít muado concentricus orbis cuibl centrumelt of Trum míd. Eccentricus urro cup centrí eflalied
 Ogea fotis defirenten .Ad motum ethia torum anx fols uariatur. Terci) nim tius corpusion@ Picherse e ?

Anderes) 1473 in + Fimenbev.

Also in Defensio, book 12

Roughly 10-folio section that sketches a homocentric schema for retrograde motion!

This fact did not register during details of transcription (initially from a bad photocopy)...

Too late for this paper but note the program:

Defensio, book 12, 226r-v

" it is advisable to address some samples of this business cursorily [now], lest we seem to go on a long detour, especially since it is alien to the present profession to hand on/teach [tradere] an entire concentric astronomy which with difficulty could someday be completed with a many-parted volume and the greater part of our age [=my later life?] and innumerable observations of the stars necessary for this purpose.

Constantine colossus in Rome

Overview of 'monster' sample

- Deep skepticism about the Ptolemaic devices (epicycle, eccentric, equant)
- Whatever their merits, they produce undetectable distances in Moon, Mercury, Venus, and Mars [also Sun?]
- Goal of a homocentric Almagest based on new observations
- Self-conscious about going against the profession

Concluding remarks

- Comments about normal science, crises, esthetics reserved for the audience!
- Instead, let's wonder how Regiomontanus would have reacted to the Commentariolus (not De rev.)?

They would have agree on several things

- Equant and "mean aux" were problems that had to be fixed! - No eccentrics!

Copernicus, Commentariolus,

"Nevertheless, the theories concerning these matters [=epicycles \& eccentrics] that have been put forth far and wide by Ptolemy and most others, although they correspond numerically [with appearances], also seemed quite doubtful, for these theories were inadequate unless they also envisioned certain equant circles on account of which it appeared that the planet never moves with uniform velocity either in its deferent sphere or with respect to its proper motion. Therefore a theory of this kind seemed neither perfect enough nor sufficiently in accord with reason."

That said, judging from the Defensio:

- Regiomontanus apparently would have hated the Commentariolus
- Fundamental diagreement about the tools of astronomy
- Copernicus adds flawed epicycles!
- Fundamental disagreement about the resulting universe
- vast tracts of unused space between and beyond the planets

Copernicus's universe +/- to scale

Saturn 230

Jupiter 130
-

Mars 30
Merc $10 \bullet$ Earth 25
Venus 18

Stars off the chart!

"Ad astronomiam attinere ut non modo calculum apparentibus accommodet, sed et figuras corporum celestium veraciter cum lege motuum edoceat; alias enim fictitiam tradere artem. Equalitatem motuum celestium operepretium tutandam esse." Regiomontanus, Defensio Theonis, 210v

Epitome of Almagest, 12 second anomaly

- Prop. 1: Regiomontanus proves the equivalence of epicyclic and eccentric models for the superior planets
- Prop. 2: Regiomontanus proves the opposite of Ptolemy's claim
- The two models are also equivalent for the inferior planets
- No comment about Ptolemy's error
 fionem planetarum oinerfam: "E2ogrefium videlicet Statiol nem: REegreffum. "Elariationes nonnullas in longitudinem motus epicy clozigratia accidentes lucidifime oifernit.

Propofitio

- دima.

3planctisaltiozibue vnicapo fueris oiucrfitatem:cpicүciue in concentrico: ant ccentricus fine epicyclo cidem fufficiens erit occafio.
[Diuerfitatique foli colligata eff in tellige. ponamus itaqy 9 morus epi cycli in concestrico: : motus planete in epicpelo collecti cquentí medio mos tui folis:quemadmodŭ uperius ofté, ra pofalant. Ecentrici vo centrimo/ ueatur ad fucceffioné fignosii equc ve, lociter cum fole: \% plancta iple fimili, ter ea velocitate procedat : qua cpicy/ clus in concentrico. Eius quidem medium locum octerminct linea a centro mundi oucta equidiftanter linee creunti a centro eccntrici per centrum pla, nete. ©Sit igit circulus mundo concentricus.a.b.g.fuper centro. $5 . \tau$ fit pur ctus.a.in que fuit centrú epicүcli:oum planctafuit in ange epice cli:f 3 puis cto.b. ©ñqร fol medio curfu coniunctus fuit planete: pusctuc.b. fuit centru ccentrici. Dune vo cpicyclus fit fuper puncto.b.z planeta in cpicyclo fuper puncto.o. Ductis igitur lineis.z.b.d.b.0.n.0.j.0.et.j.s.crit angulus.a.j.b. motus medij: τ angulus.d.b.o.biuerfitatis fue motuo medij arguméti. Sit sutt angulus.a.j.B.medij motus folis. binc in lines.j.s.erit centrum ecentri cici:quod fit.n. Donamus itaqz paimo concentricum z ecentricum cquales: et p:opo:tionem femidiametri concentrici ad femidiametrum epicpcli cqua lems p:opostioni femidianctri ccẽtrici ad oiftantiam centrosum. Erit igitur linea.z.b.fiue.z.ı.equalis.b.o. Lum aŭt buo anguli.a.z.b.et.d.b.c.equant angulo.a.j.s.fublato cốnuni.a.z.b.erit angulus.b.3.s.ç̋lis angulo.d.b.0. quarej.b.et.n.o.equales r fibi equidiftant. Et quia funt cquales : crunt oue linee. bue linee.z.13.et.b.o.equidiftanteg.vade finper centro.n.ocicripto cir,

Regiomontanus-

 Epitome of Almagest [1462] (Venice, 1496), book 12, prop. 1 [\& 2]
Equivalence of eccentric \& epicyclic

 models for ' 2 nd anomaly' [=retrograde motion]

For retrograde motion of Superior Planets

either

or equivalent
(moving) eccentric model

Both allowed by Ptolemy in Almagest, book 12, chap. 1
(b)

Fig. 8

Eccentricitas Martis 6583 "Eccentricities" proportional to
Epiciclus primus 1492
Epi[cyclus] secundus 494 Ptolemy's epicycle radii, ergo transJovis ecce[ntricitas] 1917 Epi[cyclus] a 777 b 259 mation [Epitome 12 Saturnij ecce[ntricitas] 1083 Epi[cyclus] a 852 b 284
376 Mercurij ecce[ntricitas] 2256 [2259?] Ep[icyclus] a cum b•10.6../ 100
diversitas diametrj $115159^{\prime} 19$
Orb sizes standardized t

proportio orbium celestium ad eccentricitatem 25 partium 25 [into Commentariolus
Martis semidyameter orbis 38 fere Epi[cyclus] a $5 \overline{\mathrm{M}} 34$
Epi[cyclus] b $\overline{\mathrm{M}} 51$
Jovis se[midiameter] $130 \mathrm{M} 25 \cdot$ epi[cyclus] a $10 \frac{1}{10}$ b $3 \frac{11}{30}$
Saturnij Semi[diameter] 2305 epi[cyclus] a 19415 b $6_{\frac{17}{90}}^{\frac{11}{6}}$
Veneris se[midiameter] $18 \cdot$ epi[cyclus] $\mathrm{a} \cdot \frac{3}{4} \mathrm{~b} \frac{1}{4}$
8 orbis $9 \cdot 24 \cdot$ Epi $[$ cyclus $]$ a $1 \cdot 44 \frac{3}{4} \cdot 1 \cdot 42 \frac{3}{4} \cdot b 034 \frac{1}{4}$
Ep[icyclus] a $\cdot 1 \cdot 41 \frac{1}{4} / \mathrm{b} \cdot 0 \cdot 33 \frac{3}{4}$ coll[igunt?] $\cdot 1 \cdot 7 \cdot \frac{1}{2} /$ diversitas diametri $0 \cdot 29$
Semid[iameter] orbis Lune ad ep[icyclum] a $\frac{10}{1 \frac{1}{15}}$ epi[cyclus] a ad b $\frac{19}{4}$

$$
\begin{array}{ll}
\frac{10}{1 \frac{1}{18}} & \frac{19}{4}
\end{array}
$$

"The proportion of the celestial orbs to an eccentricity of 25 parts"
Radius of the orb of Mars nearly 38
Radius of Jupiter 130
Saturn 230
Venus 18
Mercury 9; 24

